direct method for solving nonlinear two-dimensional volterra-fredholm integro-differential equations by block-pulse functions
نویسندگان
چکیده
in this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional volterra-fredholm integro-differential equations. here, we use the so-called two-dimensional block-pulse functions.first, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. then, by using this matrices, the nonlinear two-dimensional volterra-fredholm integro-differential equation has been reduced to an algebraic system. some numerical examples are presented to illustrate the effectiveness and accuracy of the method
منابع مشابه
Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
متن کاملDirect method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
متن کاملNew Direct Method to Solve Nonlinear Volterra-fredholm Integral and Integro-differential Equations Using Operational Matrix with Block-pulse Functions
A new and effective direct method to determine the numerical solution of specific nonlinear Volterra-Fredholm integral and integro-differential equations is proposed. The method is based on vector forms of block-pulse functions (BPFs). By using BPFs and its operational matrix of integration, an integral or integro-differential equation can be transformed to a nonlinear system of algebraic equat...
متن کاملThe combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملDiscrete Collocation Method for Solving Fredholm–Volterra Integro–Differential Equations
In this article we use discrete collocation method for solving Fredholm–Volterra integro– differential equations, because these kinds of integral equations are used in applied sciences and engineering such as models of epidemic diffusion, population dynamics, reaction–diffusion in small cells. Also the above integral equations with convolution kernel will be solved by discrete collocation metho...
متن کاملSolving high-order nonlinear Volterra-Fredholm integro-differential equations by differential transform method
In this paper, we apply the differential transformation method to high-order nonlinear VolterraFredholm integro-differential equations with separable kernels. Some different examples are considered the results of these examples indicated that the procedure of the differential transformation method is simple and effective, and could provide an accurate approximate solution or exact solution.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of information, security and systems managementناشر: islamic azad university e-branch
ISSN 2251-9335
دوره 4
شماره 1 2015
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023